
Candidate—aware Graph Contrastive Learning for Recommendation

Wei He*
Guohao Sun*
2212483@mail.dhu.edu.cn
ghsun@dhu.edu.cn
Donghua University

Jinhu Lu Donghua University 1209126@mail.dhu.edu.cn Xiu Susie Fang[†] Donghua University xiu.fang@dhu.edu.cn

https://github.com/WeiHeCnSH/CGCL-Pytorch-master

(SIGIR-2023)

- 1. Introduction
- 2. Approach
- 3. Experiments

Introduction

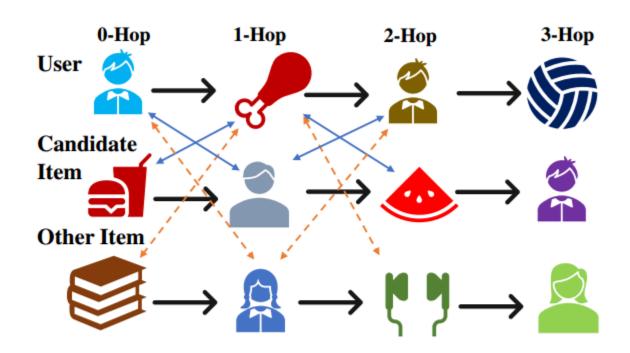
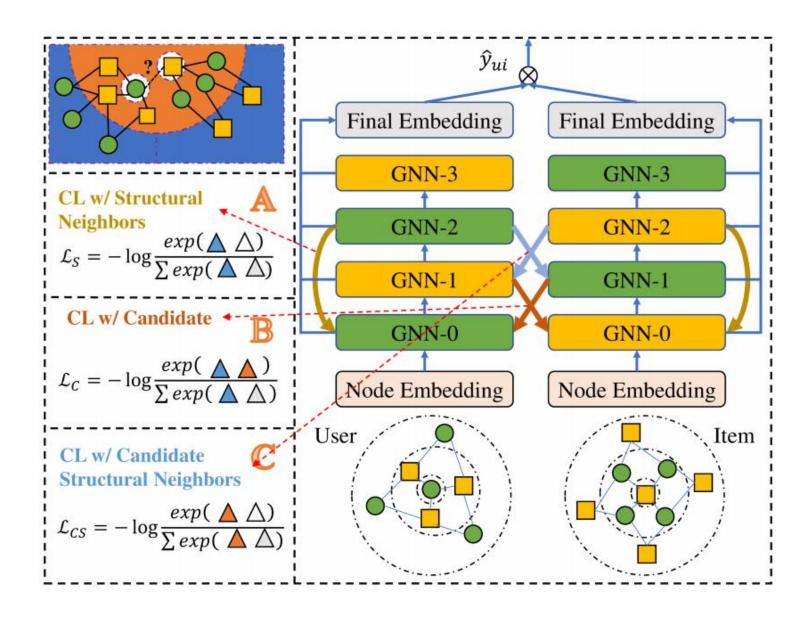
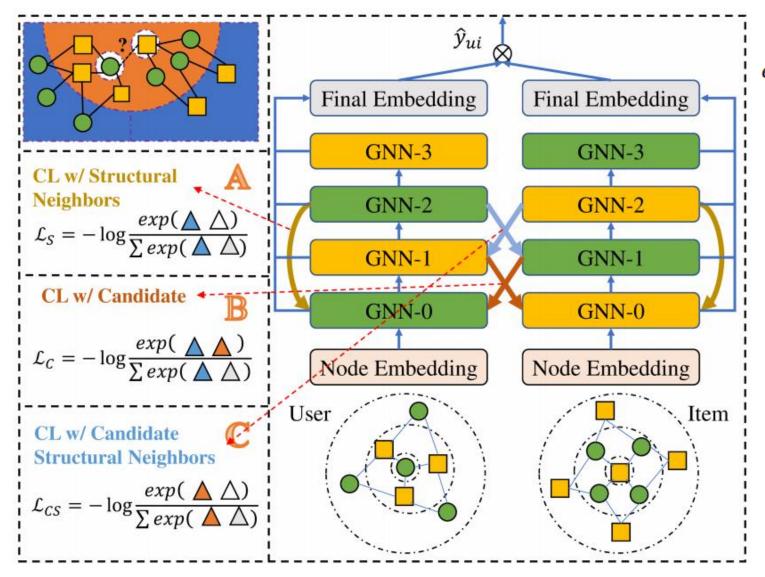




Figure 1: Illustration of the relationship between the user and the candidate item at different layers, where the blue line indicates the distance that needs to be pulled in the embedding space and vice versa in orange.

drumstick should be close to cola and watermelon and away from books and headphones in the embedding space because drumsticks, cola, and watermelon belong to the same class of the food

Approach

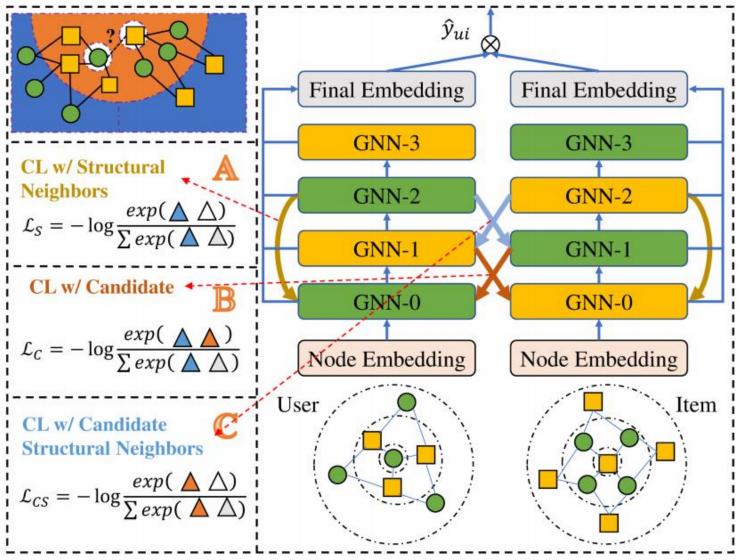
$$e_u^{(0)} = lookup(u), \quad e_i^{(0)} = lookup(i). \tag{1}$$

$$e_{u,N}^{(l)} = Agg\left(e_i^{(l-1)}, i \in N_u\right),$$

$$e_{i,N}^{(l)} = Agg\left(e_u^{(l-1)}, u \in N_i\right).$$
(2)

$$e_{u}^{(l)} = Prop\left(e_{u}^{(l-1)}, e_{u,N}^{(l)}\right),$$

$$e_{i}^{(l)} = Prop\left(e_{i}^{(l-1)}, e_{i,N}^{(l)}\right).$$
(3)


$$e_{u} = Readout\left(e_{u}^{(0)}, \cdots, e_{u}^{(L)}\right),$$

$$e_{i} = Readout\left(e_{i}^{(0)}, \cdots, e_{i}^{(L)}\right).$$
(4)

$$\hat{y}_{ui} = f\left(e_u, e_i\right). \tag{5}$$

$$\mathcal{L}_{Rec} = g\left(y_{ui}, \hat{y}_{ui}\right). \tag{6}$$

Approach

$$e_{u,N}^{(l+1)} = \sum_{i \in N_u} \frac{1}{\sqrt{|N_u||N_i|}} e_i^{(l)},$$

$$e_{i,N}^{(l+1)} = \sum_{u \in N_i} \frac{1}{\sqrt{|N_i||N_u|}} e_u^{(l)}.$$
(7)

$$e_u^{(l+1)} = e_{u,N}^{(l+1)}, \quad e_i^{(l+1)} = e_{i,N}^{(l+1)}.$$
 (8)

$$e_u = \frac{1}{L+1} \sum_{l=0}^{L} e_u^{(l)}, \quad e_i = \frac{1}{L+1} \sum_{l=0}^{L} e_i^{(l)}.$$
 (9)

$$\hat{y}_{ui} = e_u^T e_i. \tag{10}$$

$$\mathcal{L}_{Rec} = \frac{1}{|O|} \sum_{(u,i,j) \in O} -\log \sigma \left(\hat{y}_{ui} - \hat{y}_{uj}\right). \tag{11}$$

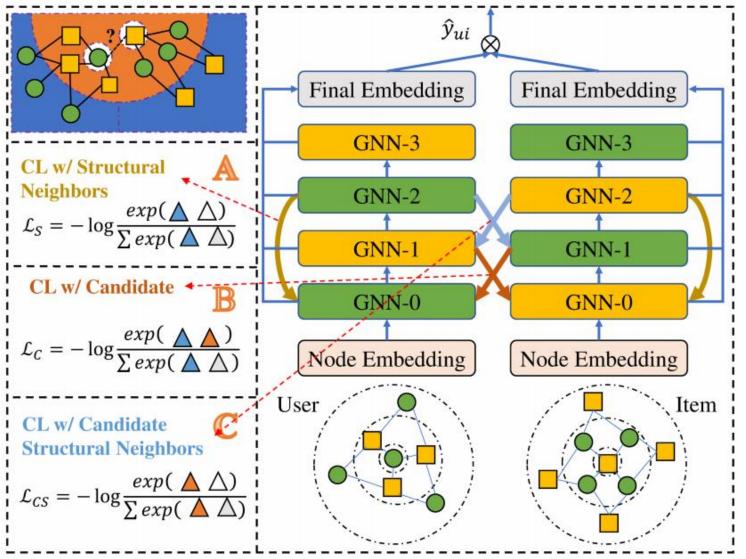
Structural Neighbors

$$\mathcal{L}_{S}^{U} = \sum_{u \in \mathcal{U}} -\log \frac{\exp\left(sim\left(e_{u}^{(k)}, e_{u}^{(0)}\right)/\tau\right)}{\sum_{v \in \mathcal{U}} \exp\left(sim\left(e_{u}^{(k)}, e_{v}^{(0)}\right)/\tau\right)}.$$
 (12)

$$\mathcal{L}_{S}^{I} = \sum_{i \in I} -\log \frac{\exp \left(sim \left(e_{i}^{(k)}, e_{i}^{(0)}\right) / \tau\right)}{\sum_{j \in I} \exp \left(sim \left(e_{i}^{(k)}, e_{j}^{(0)}\right) / \tau\right)}.$$
 (13)

$$\mathcal{L}_S = \alpha \mathcal{L}_S^U + (1 - \alpha) \mathcal{L}_S^I. \tag{14}$$

Candidate


$$\mathcal{L}_{C}^{U} = \sum_{i \in I} -\log \frac{\exp\left(sim\left(e_{i}^{\left(k'\right)}, e_{u}^{\left(0\right)}\right)/\tau\right)}{\sum_{v \in \mathcal{U}} \exp\left(sim\left(e_{i}^{\left(k'\right)}, e_{v}^{\left(0\right)}\right)/\tau\right)}.$$
 (15)

$$\mathcal{L}_{C}^{I} = \sum_{v \in \mathcal{U}} -\log \frac{\exp \left(sim \left(e_{u}^{(k')}, e_{i}^{(0)} \right) / \tau \right)}{\sum_{j \in I} \exp \left(sim \left(e_{u}^{(k')}, e_{j}^{(0)} \right) / \tau \right)}. \tag{16}$$

$$\mathcal{L}_C = \alpha \mathcal{L}_C^U + (1 - \alpha) \mathcal{L}_C^I. \tag{17}$$

Experiment

Candidate Structure Neighbors

$$\mathcal{L}_{CS}^{U} = \sum_{i \in I} -\log \frac{\exp \left(sim \left(e_{i}^{(k)}, e_{u}^{(k')} \right) / \tau \right)}{\sum_{v \in \mathcal{U}} \exp \left(sim \left(e_{i}^{(k)}, e_{v}^{(k')} \right) / \tau \right)}. \tag{18}$$

$$\mathcal{L}_{CS}^{I} = \sum_{v \in \mathcal{U}} -\log \frac{\exp \left(sim \left(e_{u}^{(k)}, e_{i}^{(k')} \right) / \tau \right)}{\sum_{j \in I} \exp \left(sim \left(e_{u}^{(k)}, e_{j}^{(k')} \right) / \tau \right)}.$$
(19)

$$\mathcal{L}_{CS} = \alpha \mathcal{L}_{CS}^{U} + (1 - \alpha) \mathcal{L}_{CS}^{I}. \tag{20}$$

$$\mathcal{L}_{CGCL} = \mathcal{L}_{Rec} + \lambda_1 \mathcal{L}_S + \lambda_2 \mathcal{L}_C + \lambda_3 \mathcal{L}_{CS} + \lambda_4 \|\Theta\|_2^2.$$
 (21)

Experiment

DataSet	Yelp				Gowalla				Amazon-Books			
Metric	Red	call	NDCG		Recall		NDCG		Recall		NDCG	
Method	20	50	20	50	20	50	20	50	20	50	20	50
NeuMF	0.0572	0.1457	0.0328	0.0510	0.1167	0.2255	0.0753	0.0969	0.0530	0.1216	0.0339	0.0486
DMF	0.0660	0.1253	0.0353	0.0507	0.1025	0.1706	0.0591	0.0759	0.0542	0.1007	0.0293	0.0414
GCMC	0.0908	0.1690	0.0494	0.0696	0.1472	0.2410	0.0810	0.1038	0.0868	0.1553	0.0481	0.0658
NGCF	0.0953	0.1764	0.0519	0.0729	0.1576	0.2546	0.0893	0.1130	0.0902	0.1598	0.0495	0.0676
LightGCN	0.1218	0.2123	0.0690	0.0741	0.1920	0.2988	0.1133	0.1192	0.1201	0.2002	0.0691	0.0737
SGL-ED	0.1335	0.2177	0.0808	0.1028	0.2153	0.3277	0.1281	0.1558	0.1418	0.2172	0.0866	0.1065
SimpleX	0.1221	0.2044	0.0728	0.0941	0.1555	0.2601	0.0784	0.1040	0.1339	0.2143	0.0790	0.1001
NCL	<u>0.1394</u>	0.2258	0.0816	<u>0.1044</u>	0.2147	0.3299	0.1260	0.1543	0.1389	0.2209	0.0818	0.1034
CGCL	0.1457	0.2404	0.0849	0.1097	0.2205	0.3391	0.1292	0.1583	0.1538	0.2400	0.0920	0.1147
Imp (%).	4.52	6.47	4.04	5.08	2.42	2.79	0.86	1.60	8.46	8.65	6.24	7.70

Table 2: The overall performance comparison of the proposed CGCL model with the state-of-the-art DNN-, GNN-, and GCL-based baselines. The optimal value is bolded and the suboptimal value is underlined.

Experiment

DataSets	#Users	#Items	#Interactions	#Density	
Yelp	45,478	30,709	1,777,765	0.00127	
Gowalla	29,859	40,989	1,027,464	0.00084	
Books	58,145	58,052	2,517,437	0.00075	

Table 1: Statistics of the datasets

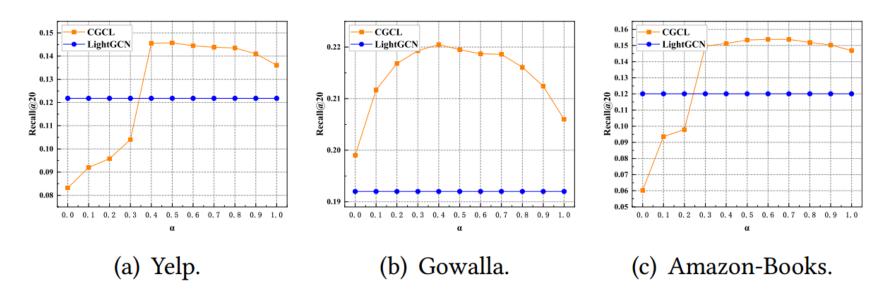


Figure 3: Performance Comparison w.r.t. Different Balance Coefficient α .

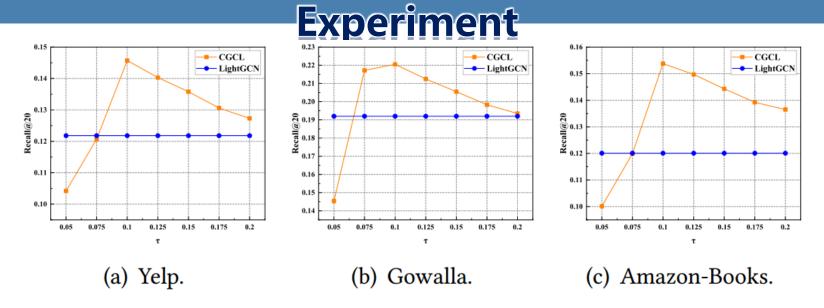
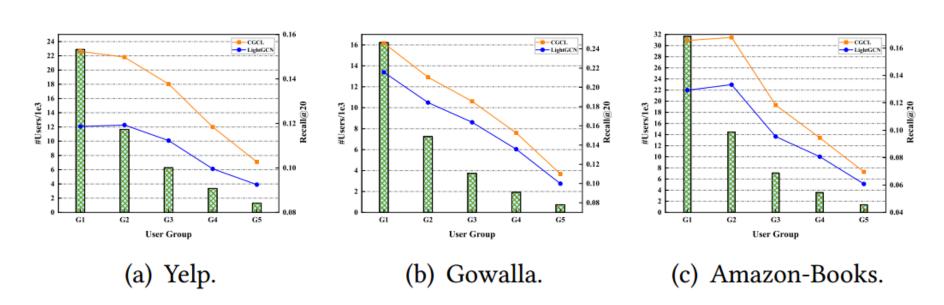



Figure 4: Performance Comparison w.r.t. Different Temperature τ .

DataSet	Ye	elp	Gow	valla	Amazon-Books		
Metric	R@20	N@20	R@20	N@20	R@20	N@20	
LightGCN	0.1218	0.069	0.1942	0.1123	0.1201	0.0691	
O s	0.1328	0.0761	0.2028	0.1191	0.1236	0.0712	
Ос	0.1342	0.0768	0.2061	0.1195	0.1343	0.0780	
O cs	0.1331	0.0755	0.2058	0.1202	0.1262	0.0729	
W/o s	0.1327	0.0755	0.2056	0.1177	0.1259	0.0727	
W/o c	0.1412	0.0824	0.2025	0.1184	0.1521	0.0910	
W/o cs	0.1447	0.0846	0.2197	0.1291	0.1534	0.0908	
All	0.1457	0.0849	0.2205	0.1292	0.1538	0.0920	

Table 3: Ablation Experimental

DataSet	Ye	lp	Gowalla		Amazon-Books		
Metric	R@20	N@20	R@20	N@20	R@20	N@20	
NGCF	0.0953	0.0519	0.1576	0.0893	0.0902	0.0495	
+CGCL	0.1084	0.0609	0.1812	0.1048	0.1259	0.0731	
Imp(%).	13.75	17.34	14.97	17.36	39.58	47.68	
LightGCN	0.1218	0.0690	0.1942	0.1123	0.1201	0.0691	
+CGCL	0.1457	0.0849	0.2205	0.1292	0.1538	0.0920	
Imp(%).	19.62	23.04	13.54	15.05	27.73	32.56	

Table 4: Performance comparison w.r.t. different backbones.

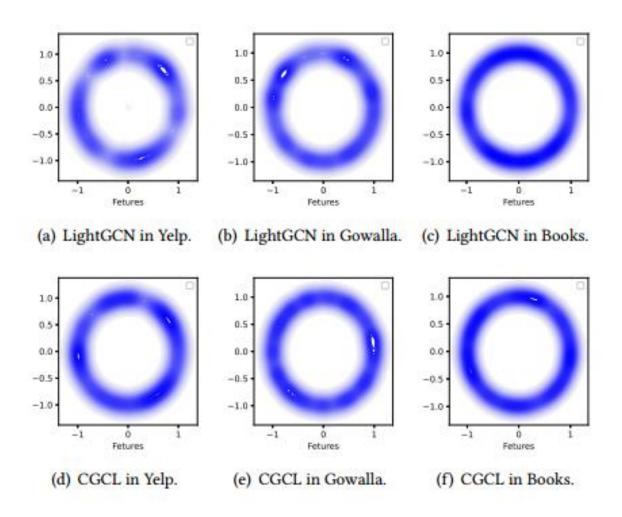


Figure 7: Feature distribution of item representations learn from the datasets in \mathbb{R}^2 (The darker the color, the more items fall within that area).

Thank you!